DIFFERENTIATION

Worksheet A

1 A curve is given by the parametric equations

$$x = t^2 + 1$$
, $y = \frac{4}{t}$.

- **a** Write down the coordinates of the point on the curve where t = 2.
- **b** Find the value of t at the point on the curve with coordinates $(\frac{5}{4}, -8)$.
- 2 A curve is given by the parametric equations

$$x = 1 + \sin t$$
, $y = 2\cos t$, $0 \le t < 2\pi$.

- a Write down the coordinates of the point on the curve where $t = \frac{\pi}{2}$.
- **b** Find the value of t at the point on the curve with coordinates $(\frac{3}{2}, -\sqrt{3})$.
- 3 Find a cartesian equation for each curve, given its parametric equations.

a
$$x = 3t$$
, $y = t^2$

a
$$x = 3t$$
, $y = t^2$ **b** $x = 2t$, $y = \frac{1}{t}$

c
$$x = t^3$$
, $y = 2t^2$

d
$$x = 1 - t^2$$
, $y = 4 -$

e
$$x = 2t - 1$$
, $y = \frac{2}{x^2}$

d
$$x = 1 - t^2$$
, $y = 4 - t$ **e** $x = 2t - 1$, $y = \frac{2}{t^2}$ **f** $x = \frac{1}{t - 1}$, $y = \frac{1}{2 - t}$

A curve has parametric equations 4

$$x = 2t + 1$$
, $y = t^2$.

- **a** Find a cartesian equation for the curve.
- **b** Hence, sketch the curve.
- 5 Find a cartesian equation for each curve, given its parametric equations.

$$\mathbf{a} \quad \mathbf{r} = \cos \theta \quad \mathbf{v} = \sin \theta$$

h
$$y = \sin \theta$$
 $y = \cos 2\theta$

a
$$x = \cos \theta$$
, $y = \sin \theta$ **b** $x = \sin \theta$, $y = \cos 2\theta$ **c** $x = 3 + 2\cos \theta$, $y = 1 + 2\sin \theta$

d
$$y = 2 \sec \theta$$
 $y = 4 \tan \theta$

d
$$x = 2 \sec \theta$$
, $y = 4 \tan \theta$ **e** $x = \sin \theta$, $y = \sin^2 2\theta$ **f** $x = \cos \theta$, $y = \tan^2 \theta$

$$\mathbf{f} = \mathbf{r} - \cos \theta \quad \mathbf{v} - \tan^2 \theta$$

6 A circle has parametric equations

$$x = 1 + 3\cos\theta$$
, $y = 4 + 3\sin\theta$, $0 \le \theta < 2\pi$.

- a Find a cartesian equation for the circle.
- **b** Write down the coordinates of the centre and the radius of the circle.
- c Sketch the circle and label the points on the circle where θ takes each of the following values:

$$0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}.$$

- 7 Write down parametric equations for a circle
 - \mathbf{a} centre (0, 0), radius 5,
 - **b** centre (6, -1), radius 2,
 - **c** centre (a, b), radius r, where a, b and r are constants and r > 0.
- 8 For each curve given by parametric equations, find a cartesian equation and hence, sketch the curve, showing the coordinates of any points where it meets the coordinate axes.

a
$$x = 2t$$
, $y = 4t(t-1)$

b
$$x = 1 - \sin \theta$$
, $y = 2 - \cos \theta$, $0 \le \theta < 2\pi$

$$\mathbf{c}$$
 $x = t - 3$, $y = 4 - t^2$

d
$$x = t + 1$$
, $y = \frac{2}{t}$